Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Applications such as unbalanced and fully shuffled regression can be approached by optimizing regularized optimal transport (OT) distances, including the entropic OT and Sinkhorn distances. A common approach for this optimization is to use a first-order optimizer, which requires the gradient of the OT distance. For faster convergence, one might also resort to a second-order optimizer, which additionally requires the Hessian. The computations of these derivatives are crucial for efficient and accurate optimization. However, they present significant challenges in terms of memory consumption and numerical instability, especially for large datasets and small regularization strengths. We circumvent these issues by analytically computing the gradients for OT distances and the Hessian for the entropic OT distance, which was not previously used due to intricate tensorwise calculations and the complex dependency on parameters within the bi-level loss function. Through analytical derivation and spectral analysis, we identify and resolve the numerical instability caused by the singularity and ill-posedness of a key linear system. Consequently, we achieve scalable and stable computation of the Hessian, enabling the implementation of the stochastic gradient descent (SGD)-Newton methods. Tests on shuffled regression examples demonstrate that the second stage of the SGD-Newton method converges orders of magnitude faster than the gradient descent-only method while achieving significantly more accurate parameter estimations.more » « lessFree, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Despite the recent popularity of attention-based neural architectures in core AI fields like natural language processing (NLP) and computer vision (CV), their potential in modeling complex physical systems remains underexplored. Learning problems in physical systems are often characterized as discovering operators that map between function spaces based on a few instances of function pairs. This task frequently presents a severely ill-posed PDE inverse problem. In this work, we propose a novel neural operator architecture based on the attention mechanism, which we refer to as the Nonlocal Attention Operator (NAO), and explore its capability in developing a foundation physical model. In particular, we show that the attention mechanism is equivalent to a double integral operator that enables nonlocal interactions among spatial tokens, with a data-dependent kernel characterizing the inverse mapping from data to the hidden parameter field of the underlying operator. As such, the attention mechanism extracts global prior information from training data generated by multiple systems, and suggests the exploratory space in the form of a nonlinear kernel map. Consequently, NAO can address ill-posedness and rank deficiency in inverse PDE problems by encoding regularization and achieving generalizability. We empirically demonstrate the advantages of NAO over baseline neural models in terms of generalizability to unseen data resolutions and system states. Our work not only suggests a novel neural operator architecture for learning interpretable foundation models of physical systems, but also offers a new perspective towards understanding the attention mechanism. Our code and data accompanying this paper are available at https://github.com/fishmoon1234/NAO.more » « lessFree, publicly-accessible full text available December 10, 2025
-
Nonlocal operators with integral kernels have become a popular tool for designing solution maps between function spaces, due to their efficiency in representing long-range dependence and the attractive feature of being resolution-invariant. In this work, we provide a rigorous identifiability analysis and convergence study for learning kernels in nonlocal operators. It is found that kernel estimation is an ill-posed or even ill-defined inverse problem, leading to divergent estimators in the presence of modeling errors or measurement noises. To resolve this issue, we propose a nonparametric regression algorithm with a novel data-adaptive RKHS Tikhonov regularization method based on the function space of identifiability. The method yields a noisy-robust convergent estimator of the kernel as the data resolution refines, on both synthetic and real-world datasets. In particular, the method successfully learns a homogenized model for stress wave propagation in a heterogeneous solid, revealing the unknown governing laws from real-world data at the microscale. Our regularization method outperforms baseline methods in robustness, generalizability, and accuracy.more » « less
An official website of the United States government
